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Abstract

Neurodegenerative diseases are characterized by the
irreversible loss of neurons involved in networks, impor-
tant for specific physiological functions. At present,
several renewable cell sources stand in line to replace
fetal brain cells as potential cell source for transplanta-
tion in the damaged brain. Recent developments raise
the hope that selective populations of different neuronal
phenotypes could be made “on demand”. However, for
every potential cell source there are still a lot of ques-
tions and drawbacks, which need to be resolved before a
cell source could become the standard for clinical neu-
ronal transplantation. The recent finding that the brain
responds to damage by increased endogenous neuro-
genesis could prelude new “neurothrophic therapies”,
based on stimulating this endogenous repair. From pre-
clinical studies it is evident that different disease mech-
anisms require different cell therapy approaches,
depending on the underlying factor of the disease, the
identity of neuronal systems that are involved and the
complexity of networks that are affected. In this review
the potential of different cell sources, including the
endogenous progenitor cells, are discussed. Also results
of preclinical and clinical transplantation studies in
three different disease models are critically evaluated.

Key words : Neurodegenerative diseases ; fetal brain ;
stem cell ; cell therapy ; stroke ; Parkinson’s disease ;
epilepsy.

Introduction

Current therapies for neurodegenerative diseases
provide effective symptomatic relief, particularly
in early stages of the disease. However, there are
too few therapies, if any, that affect the underlying
disease processes. Therefore disease-modifying
therapies that halt, slow down or reverse disease
progression are sorely needed. Some of the possi-
ble treatment options would be : immunological
responses, neurotrophic or anti-apoptotic treat-
ment, gene therapy and cell therapy. Replacement
of the lost cells seems to be a vital step for func-
tional repair of the brain damage, since in most
cases the spared systems cannot replace the
function of the lost cells. In contrast to other
mammalian tissues the adult mammalian nervous

system has weak capabilities for both endogenous
cell replacement and pattern repair. The reason for
this defective self repair is that adult neuronal cells
cannot regenerate after being damaged and that
endogenous neural stem cells have only a very
limited potential to generate new neuronal cells to
replace degenerated neurons. Therefore there is
great interest in restoring the damaged nervous sys-
tem by stimulating endogenous repair or by trans-
planting new cells into the damaged brain. These
cells can be selected on the base of their phenotype,
the neurotransmitter they release or by the way
they are genetically engineered. Before cell thera-
py can be a routinely done practice in the clinic, a
lot of questions will have to be answered by pre-
clinical research. At this moment different cell
sources are tested for their potential to mediate
functional repair of brain damage. The goal of this
review is to critically evaluate the potential of dif-
ferent candidate cell sources for transplantation.
The possibility of stimulating endogenous self
repair will be discussed. Three selected neurode-
generative diseases will be presented and the
progress and possibilities of cell therapy will be
discussed. 

Cell sources

FETAL BRAIN TISSUE

Most studies in neurodegenerative diseases have
used fetal brain tissue for implantation. Cells are
isolated at a time point on which the cells, that have
to be implanted, are already fully differentiated in
the appropriate cell type. There is a critical time
window for the isolation of the population of neu-
rons for implantation. If the relevant neurons are
too young, they are not yet differentiated. If they
are too old, they have developed extensive connec-
tions so that dissection involves axotomy and trau-
ma. This optimal time window, however, varies
between different neuronal populations (Dunnett
and Bjorklund, 1992). This implies that a lot of
fetal brains are necessary to obtain sufficient tissue
to be implanted and mostly only one neuronal
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phenotype can be isolated from one single fetus.

STEM CELLS

The ethical and practical problems around fetal
tissue transplantation have led to the search for
alternative cell sources. Stem cells seem to be ideal
candidates for transplantation. Stem cells are
broadly defined as progenitor cells which produce
differentiated progeny and are capable to self-
renew (Morrison et al., 1997). Stem cells could
become an almost unlimited source for the genera-
tion of specific neurons. The cell preparations
could be standardized and quality-controlled with
respect to viability and purity. Different types of
stem cells could be used for neuronal transplanta-
tion.

Neural stem cells

Neural stem cells (NSCs) can be isolated from
different regions of the embryonic central nervous
system (CNS) or from restricted areas in the adult
brain. Technical advances in recent years, includ-
ing the use of bromodeoxyuridine (BrdU) and
retroviral reporter mitotic labeling, have shown
that the hippocampal dentate gyrus and the fore-
brain subventricular zone (SVZ), with a rostral
migratory stream (RMS) of neuroblasts towards
the olfactory bulbs, are germinative regions in
which neurogenesis is ongoing throughout life
(Cameron et al., 1993 ; Lois et al., 1996 ; Lois and
Alvarez-Buylla, 1994 ; van Praag et al., 2002). It is
presumed that this ongoing neurogenesis is an inte-
gral part of ongoing plasticity in the adult mam-
malian brain. NSCs have been isolated from rodent
central nervous system (Galli et al., 2003 ; Galli et
al., 2003 ; Gobbel et al., 2003 ; Gritti et al., 1999 ;
Kim et al., 2003 ; Palmer et al., 1995 ; Palmer et
al., 1997 ; Palmer et al., 1999 ; Reynolds and
Weiss, 1996 ; Seaberg and van der Kooy, 2002 ;
Shihabuddin et al., 1997 ; Shihabuddin et al., 2000
; Temple and Alvarez-Buylla, 1999 ; Toda et al.,
2000 ; Vicario-Abejon et al., 2000 ; Weiss et al.,
1996 ; Weiss, 1999) and human brain (Akiyama et
al., 2001 ; Flax et al., 1998 ; Fricker et al., 1999 ;
Nunes et al., 2003 ; Svendsen et al., 1999 ;
Svendsen and Caldwell, 2000 ;Vescovi et al.,
1999). NSCs are defined by three main characteris-
tics : they can self-renew, give rise to all of the
major neural cells types, i.e. neurons, oligodendro-
cytes and astrocytes (Song et al., 2002b) and when
transplanted into the brain they are able to survive,
migrate and integrate in a functionally active way
(Auerbach et al., 2000 ; Englund et al., 2002 ; Flax
et al., 1998 ; Gage et al., 1995). When NSC are
transplanted into the damaged brain, they migrate
preferentially towards the damaged areas, where
they also seem to integrate and replace the lost cells
(Barker and Dunnett, 1999 ; Bjorklund et al., 2002
; Dziewczapolski et al., 2003 ; Pluchino et al.,

2003 ; Yandava et al., 1999). However, precursors
isolated from adult telencephalon and propagated
as neurospheres generate disappointingly few neu-
rons, both in transplantation paradigms as well as
in differentiating conditions in vitro (Fricker et al.,
1999 ; Song et al., 2002a). Also the kind of differ-
entiated cell types that they can generate is limited
depending upon the developmental stage and
region from which they are isolated and the in vitro
conditions in which they are grown thereafter
(Hack et al., 2004 ; Horiguchi et al., 2004 ; Parmar
et al., 2002).

Embryonic stem cells

Embryonic stem cells are also an attractive cell
source for transplantation into the damaged brain.
These cells are truly pluripotent and have an unlim-
ited capacity for in vitro expansion. The cells can
easily be genetically manipulated. Several differen-
tiation protocols have already been developed for
differentiation of embryonic stem cells towards
neurons and neuronal-restricted precursors
(Carpenter et al., 2001 ; Gokhan and Mehler, 2001 ;
Kim et al., 2002 ; Li et al., 1998 ; Mujtaba et al.,
1999 ; O’Shea, 2001 ; Okabe et al., 1996 ; Strubing
et al., 1995 ; Temple, 2001 ; Westmoreland et al.,
2001 ; Wichterle et al., 2002). ES cell-derived neur-
al precursors incorporate into the CNS and differ-
entiate into neurons and glia (Brustle et al., 1997 ;
McDonald et al., 1999 ; Zhang et al., 2001).
Electrophysiological studies have demonstrated
that transplanted embryonic derived neurons
(ESNs) display electrophysiological properties sim-
ilar to endogenous cells (Kim et al., 2002).
Embryonic stem cell-derived glial precursors
(ESGPs), have been used successfully for myelin
repair (Brustle et al., 1999 ;Liu et al., 2000) and dye
coupling studies showed that the ESGP-derived
astrocytes formed gap junctions with each other but
also with host astrocytes after transplantation in
hippocampal slices (Scheffler et al., 2003). 

Although embryonic stem cells seem to have an
unrestricted potential to differentiate towards neu-
roectodermal phenotypes, embryonic stem cells
cannot be readily transplanted into the brain.
Because of the enormous random in vitro differenti-
ation potential of embryonic stem cells, any remain-
ing non-neural (Tabar and Studer, 2002) pluripotent
embryonic stem cell could give rise to teratomas
upon transplantation, resulting in significant con-
cerns as to the clinical safety of this approach. When
ES cells are transplanted into the striatum of an ani-
mal model for PD, they differentiate into a signifi-
cant number of dopamine neurons but the incidence
of ES-mediated tumor formation in this study was
high (20%) (Bjorklund et al., 2002).

Adult non-neuronal somatic stem cells 

Several recent reports suggest that adult somatic
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stem cells isolated from non-neuronal tissues may
“transdifferentiate” across tissue lineage boundaries,
thus offering an accessible source for therapeutic
applications even for neural tissue repair. Human
and animal bone marrow (BM) transplantation
studies have shown that donor derived neurons and
glial cells can be found in the brain of the host
(Brazelton et al., 2000 ; Eglitis and Mezey, 1997 ;
Mezey et al., 2000 ; Mezey et al., 2003). However,
the number of these “transdifferentiated” cells is
extremely low and recent works have demonstrat-
ed that donor BM cells contribute to adult Purkinje
neurons through cell fusion (Alvarez-Dolado et al.,
2003 ; Weimann et al., 2003). This is in contrast to
another study which demonstrated that human
hematopoietic cells could contribute to long term
adult human neuropoiesis without fusing (Cogle et
al., 2004). It seems that fusion as well as transdif-
ferentiation can explain the presence of donor-
derived cells in the brain of the recipient. Also puri-
fied mesenchymal stem cells, isolated from the
bone marrow, seem to be capable of differentiating
in vitro (Black and Woodbury, 2001 ; Deng et al.,
2001 ; Dezawa et al., 2004 ; Kohyama et al., 2001 ;
Rismanchi et al., 2003 ; Sanchez-Ramos et al.,
2000 ; Sanchez-Ramos, 2002 ; Woodbury et al.,
2000 ; Woodbury et al., 2002) and in vivo (Chopp
and Li, 2002 ; Kopen et al., 1999) towards cells
expressing neuronal and glial markers. Expression
of neuronal and glial markers, on the contrary, can-
not be seen as an absolute proof of neuronal differ-
entiation since it has been demonstrated that undif-
ferentiated mesenchymal stem cells also express
markers for neural lineage (Woodbury et al., 2002).
Moreover only one study has been able to demon-
strate that MSC can differentiate towards neurons
displaying appropriate electrophysiological charac-
teristics (Kohyama et al., 2001). In addition to
hematopoietic and MSC stem cells, rare pluripotent
stem cell subsets have been isolated from BM. A
rare cell, called multipotent adult progenitor cell
(MAPC), has been co-isolated with mesenchymal
stem cells and is able to differentiate towards cells
from the endodermal, mesodermal and ectodermal
phenotypes (Jiang et al., 2002). This MAPC cell is
capable of differentiating toward cells with mor-
phological and electrophysiological properties of
midbrain neurons (Jiang et al., 2003). Recently a
new pluripotent, CD45 negative population from
human cord blood, termed unrestricted somatic
stem cells (USSCs), has been described (Kogler et
al., 2004). It has been demonstrated that these cells
can be differentiated towards neuronal cell types.
Implantation of these cells in rat brain revealed that
human tau-positive neurons persisted in the rat
brain for up to 3 months. In this study, though, no
electrophysiological experiments were done to
confirm that the cells were indeed functionally
active neurons. Other cells that display a presumed
neurogenic potential are adipose-derived stem cells

(Safford et al., 2002) and stem cells derived
from the dermis of mammalian skin (Toma et al.,
2001).

BIO-ENGINEERED CELLS

Cells can be genetically engineered to overcome
problems such as senescence or to induce cells to
release neurotrophic or neuromodulating factors.
For example, neuroepithelial precursor cells,
derived from defined regions and prior to their ter-
minal mitosis, have been infected with a retrovirus
encoding a temperature sensitive immortalizing
oncogene. When transplanted into the intact brain,
most of these cell lines will differentiate towards
neurons, astrocytes and oligodendrocytes. They
even seem to respond to local microenvironmental
cues, since the cells differentiate with morpholo-
gies indistinguishable from those of local endoge-
nous neurons (Martinez-Serrano and Bjorklund,
1997 ; Whittemore and Onifer, 2000). These
immortalized cell lines have been utilized in a vari-
ety of ex vivo gene therapy experiments, in which
they have been genetically modified in order to
release different disease modifying molecules. As
an example NGF-secreting cells from the HiB5 cell
line have been implanted into the adult rat striatum.
One week after transplantation a stroke was
induced by middle cerebral artery occlusion. The
graft prevented striatal degeneration of both pro-
jection neurons and cholinergic interneurons
(Andsberg et al., 1998). Different other growth fac-
tor-, neurotransmitter- or metabolite-releasing
immortalized cell lines have been created by genet-
ic engineering. For example, cell lines releasing
brain derived neurotrophic factor (BDNF) (Rubio
et al., 1999) ; neurotrophin 3 (Liu et al., 1999) ;
neurotransmitters, such as GABA (Eaton et al.,
1999) ; or metabolites, such as b-glucuronidase
(Snyder et al., 1995) have been developed. Next to
these immortalized cell lines other cell sources
have been engineered to release disease-modifying
substances. Commonly used cell types are fibrob-
lasts (Blesch et al., 2001 ; Liu et al., 2002 ; Pizzo
et al., 2004 ; Tobias et al., 2003) and stem cells
(Arnhold et al., 2003 ; Behrstock and Svendsen,
2004 ; Zhao et al., 2004).

STIMULATING ENDOGENOUS REPAIR

The finding that there is ongoing neurogenesis in
dentate gyrus of the hippocampus and the forebrain
SVZ, has led to the idea that stimulation of neuro-
genesis could enhance endogenous brain repair.
There is some suggestion that neurogenesis also
can exist in other brain regions such as the neocor-
tex (Gould et al., 2001 ; Magavi et al., 2000), the
amygdala (Bernier et al., 2002) and the substantia
nigra (Zhao et al., 2003). These findings are con-
troversial, however, (Koketsu et al., 2003 ;



CELL THERAPY FOR NEURODEGENERATIVE DISEASES 161

Kornack and Rakic, 2001) and if neurogenesis
exists in these regions it is probably at much lower
degree or may only be induced after insults
(Mohapel and Brundin, 2004). Evidence from in
vivo studies suggests that specific growth and neu-
rotrophic factors influence neural precursor prolif-
eration in the adult rodent dentate gyrus and SVZ,
and in some cases in other brain regions such as
striatum, thalamus, hypothalamus, septum and
parenchymal regions lining the ventricles. These
factors include basic fibroblast growth factor
(bFGF), insulin growth factor-1 (IGF-1), epidermal
growth factor (EGF), vascular endothelial groth
factor (VEGF) and cilliary neurotrophic factor
(GDNF) (Aberg et al., 2000 ; Benraiss et al., 2001
; Emsley and Hagg, 2003 ; Kuhn et al., 1997 ;
Schanzer et al., 2004 ; Wagner et al., 1999b).
Several lines of evidence suggest that astrocytes
play important roles in the migration, differentia-
tion, integration and survival of neuroblasts
derived from SVZ and dentate gyrus. (Doetsch et
al., 1999 ; Galli et al., 2003 ; Lim and Alvarez-
Buylla, 1999 ; Song et al., 2002a). Because astro-
cytes are activated by most brain insults, they are
most likely also involved in injury-induced neuro-
genesis. 

A lot of work has been done on damaged
induced neurogenesis in several models of stroke.
Two recent reports indicate that forebrain SVZ
neurogenesis increases ispilateral to the infarct
after adult rat transient middle cerebral artery
occlusion (tMCAO) (Arvidsson et al., 2002 ;
Parent et al., 2002). The neuroblasts generated after
stroke form chains closely apposed to astrocytes
that extend from the SVZ to the injured striatum
although it seems that only a small portion of the
newly formed striatal neurons survive. When selec-
tive damage is induced to the hippocampal CA1
region, by inducing transient four vessel ischemia
in rats, and subsequently bFGF and EGF are
infused for three days in the first week after stroke,
40 % of the CA1 pyramidal neurons are regenerat-
ed. The source for the newly generated neurons is
demonstrated to be the SVZ in the posterior
periventricular region (Nakatomi et al., 2002).
Transient global ischemia in young adult macaque
monkeys also induces a significant postischemic
increase of the number of newly formed cells in the
hippocampal dentate gyrus, subventricular zone of
the temporal horn of the lateral ventricle and tem-
poral neocortex (Tonchev et al., 2003). 

Cell therapy for different neuronal disease
mechanisms

It seems that the potential of cell therapy to
restore neuronal damage mostly depends on the
complexity of the disease. This ranges from focal
cell death of only one neural or glial phenotype to

more extensive cell death of different neuronal
phenotypes throughout the brain. In the next chap-
ter three different disease models of an increasing
complexity are presented and the possibilities for
developing cell therapy are evaluated. 

REPLACING SINGLE NEURONAL PHENOTYPES :
PARKINSON’S DISEASE (PD)

CNS diseases affecting specific neuronal cell
populations are Parkinson’s disease (PD, loss of
striatal dopaminergic neurons), Huntington’s dis-
ease (HD ; loss of GABAergic striatal spiny pro-
jection neurons) and amyotrophic lateral sclerosis
(ALS, loss of cholinergic motorneurons). These
neurodegenerative diseases are the most attractive
ones to be treated with cell therapy and therefore a
considerable amount of research has been done to
investigate the possibilities of repair by cell trans-
plantation. The reader is referred to excellent
reviews of these studies (Bjorklund and Lindvall,
2000 ; Isacson, 2003 ; Lindvall et al., 2004). In this
review only progress in cell therapy for PD will be
discussed. In PD there is specific loss of the major-
ity of midbrain dopaminergic neurons projecting
towards the striatum. Clinical trials for transplanta-
tion of human embryonic mesencephalic tissue into
the striatum of patients with severe Parkinson’s dis-
ease have shown that neuronal replacement can
work in the human brain. The grafted neurons sur-
vive and reïnnervate the striatum for as long as 10
years despite an ongoing disease process
(Kordower et al., 1995 ; Piccini et al., 1999). These
open trials have shown that after transplantation
dopamine release is elevated and clinical benefit
becomes evident (Piccini et al., 2000). A systemat-
ic review of 11 studies reporting 95 graft studies
was made by Polgar et al., 2003. Two double blind
sham surgery-controlled trials, however, showed
no statistically significant improvement in behav-
ioral score. It seems that the outcome of transplan-
tation is dependent on the age of the donor, the
severity of the disease (Freed et al., 2001 ; Olanow
et al., 2003) and the variation in composition of the
graft. Several studies reported the occurrence of
dyskinesias as an important side effect of trans-
plantation, which became troublesome in 7-15% of
grafted patients (Freed et al., 2001 ; Hagell et al.,
2002 ; Olanow et al., 2003). These rather disap-
pointing results and the occurrence of dyskinesias,
next to the limited tissue availability and the wide
variation in functional outcome, impelled the
search for alternative sources from which large
numbers of dopaminergic neurons can be generat-
ed. Several recent publications provide a good
review of the different studies in which dopaminer-
gic differentiation of several types of stem cells
was investigated (Bjorklund and Lindvall, 2000 ;
Brundin and Hagell, 2001 ; Lindvall, 2003 ;
Lindvall et al., 2004 ; Lindvall and Hagell, 2002 ;
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Lindvall and McKay, 2003). Functionally active
dopaminergic neurons can be generated from
mouse (Kim et al., 2002 ; Morizane et al., 2002)
and monkey embryonic stem cells (ECSs)
(Kawasaki et al., 2002) and from neural stem cells
(NSCs) derived from the fetal rodent (Carvey et al.,
2001 ; Wagner et al., 1999a ; Yan et al., 2001) and
human brain (Storch et al., 2001), using different
neuronal differentiation protocols. However, up to
now there is only one report describing differentia-
tion of adult neural stem cells towards dopaminer-
gic neurons (Daadi and Weiss, 1999). Also there is
little evidence that functional dopaminergic neu-
rons can be obtained from non-neural stem cells.
One study described differentiation of mesenchy-
mal stem cells towards functionally active
dopaminergic neurons but when these cells where
transplanted into the diseased brain they did not
differentiate towards neurons (Jiang et al., 2003 ;
Zhao et al., 2002). Dopaminergic neurons derived
from stem cells have been transplanted into
Parkinson’s models and in some cases clear behav-
ioral recovery could be demonstrated (Lindvall,
2003).

CELL THERAPY FOR DISEASES AFFECTING MULTIPLE

BRAIN REGIONS AND NEURONAL PHENOTYPES

Probably the most difficult to treat are diseases
where transplanted cells should be able to generate
multiple phenotypes and reform long distance con-
nections such as in the case of cerebral ischemic
insults (Rossi and Cattaneo, 2002) and epilepsy
(Grisolia, 2001).

Cerebral ischemic insults

There are two main types of ischemic insults that
affect the brain in a specific way. First, cardiac
arrest or coronary artery occlusion causes an abrupt
and near-total interruption of total cerebral blood
flow. This global ischemia causes selective neu-
ronal death of certain vulnerable neuronal popula-
tions such as the pyramidal neurons of CA1 hip-
pocampal subregion. In the case of global
ischemia, fetal hippocampal CA1 tissue and condi-
tionally immortalized neuroepithelial MHP36 cells
have been transplanted into the damaged CA1
region. In the case of transplantation of fetal CA1
tissue behavioral recovery is dependent on the
establishment of some afferent and efferent con-
nections. In the case of MHP36 cells there was also
a behavioral improvement but only a small portion
of the grafted cells displayed neuronal or glial
markers. So it remains unclear whether behavioral
recovery was caused by restoration of  functional
connectivity or by secretion of trophic substances
(Sinden et al., 1995 ; Sinden et al., 1997 ; Virley et
al., 1999).

The second type of ischemic insult, stroke, is

caused by occlusion of a cerebral artery and leads
to irreversible damage in a core region, which is
surrounded by a zone of partially reversible injury,
the penumbra zone. The majority of cases with
stroke in humans are caused by occlusion of the
middle cerebral artery, which leads to infarction in
the cerebral cortex, basal ganglia and internal cap-
sule. In the only reported clinical trial, neurons
generated from the human teratocarcinoma cell line
NT-2 have been implanted in the infarcted area of
patients, who had experienced a stroke in the basal
ganglia. Behavioral improvements were seen in
some patients (Kondziolka et al., 2000) and autop-
sy in one patient revealed the presence of grafted
cell expressing neuronal markers 2 years after
grafting (Nelson et al., 2002). Next to this human
trial, cells from different origins (fetal cortical and
striatal tissue, neural precursor cells, cell lines with
neurogenic potential, bone marrow stromal cells)
have been transplanted in different affected regions
in the brain (cortex, striatum), in the ventricles or
intravenously (Lindvall et al., 2004 ; Savitz et al.,
2002). In most cases the transplanted cells survived
and a partial behavioral recovery could be seen.
However, in few studies there is evidence for a
functional integration of these cells into the dam-
aged networks. It is possible that transplantation
may enrich the local neural environment through
region-specific synaptic connections and trophic
factors. Alternatively, grafts may upregulate
endogenous recovery mechanisms and induce sur-
viving cells to establish new circuits.

Epilepsy

Epilepsy has many etiologies, all leading to an
imbalance between excitation and inhibition.
Unlike in the two other disease mechanisms pre-
sented so far, there is no identifiable defect to be
restored by cell therapy. Nevertheless, in temporal
lobe epilepsy (TLE) there is a common lesion : hip-
pocampal sclerosis (Blumcke et al., 1999 ; Liu et
al., 1995). Hippocampal sclerosis is characterized
by a selective loss of hippocampal neurons, axonal
sprouting and dense gliosis. However, it is still
unproven whether seizures are a cause or an effect
of hippocampal sclerosis. Grafting of fetal hip-
pocampal tissue for repair of hippocampal net-
works in the intrahippocampal kainic acid model
for TLE led to the partial reversal of some of the
characteristic anatomopathological changes of hip-
pocampal sclerosis, such as mossy fiber sprouting
and loss of GABAergic interneurons. (Shetty et al.,
2000 ; Shetty and Turner, 1996 ; Shetty and Turner,
1997a ; Shetty and Turner, 1997b ; Shetty and
Turner, 2000 ; Zaman et al., 2000 ; Zaman and
Shetty, 2001 ; Zaman and Shetty, 2003). A major
caveat in these studies is that the authors have not
investigated the influence of transplantation on the
occurrence of epileptic seizures (personal commu-
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nication, Ashok Shetty, 2002). Another transplanta-
tion strategy consists of grafting neurotransmitter
releasing cells to modulate network excitability.
When GABA-rich fetal striatal tissue is transplant-
ed into the substantia nigra (SN) of fully amygdala
kindled rats this leads to a significant increase in
the threshold to electrically evoke focal discharges
(after discharge threshold [ADT]) and a significant
reduction of seizure severity (Loscher et al., 1998).
However, this seizure-suppressing effect was only
transient and disappeared over the weeks after
transplantation. Noradrenaline-rich locus coeruleus
(LC) tissue has been transplanted in the damaged
hippocampus of status epilepticus models. Grafting
led to a reduction of the number of spontaneous
seizures from (Bortolotto et al., 1990). But if the
transplanted rats were subjected to kindling stimu-
lations approximately eight months after transplan-
tation, no difference in afterdischarge threshold and
kindling rate could be demonstrated (Holmes et al.,
1991). Next to neurotransmitter rich fetal brain tis-
sue, cells have been engineered to release agents
for the inhibition of in vivo seizure activity.
Thompson et al. engineered conditionally immor-
talized mouse neurons to deliver GABA by driving
GAD65 expression under the control of a tetracy-
cline regulatable promoter (Thompson et al.,
2000). This cell line has been transplanted into the
SNr (Thompson et al., 2000) or the pyriform cortex
(Gernert et al., 2002) of rats prior to kindling. In
both cases the transplantation had only weak
effects on ADT and kindling rate. These GABA
releasing cells have also been transplanted in the
lithium pilocarpine status epilepticus model for
TLE, which displays spontaneous seizures. The
animals were transplanted into the anterior SN 45-
65 days after SE (Thompson and Suchomelova,
2004). Seven to 10 days after transplantation a
robust suppression of seizures and the reduction in
epileptiform spikes emerged in the group that was
transplanted with GABA releasing cells. The eval-
uation of the seizure suppressant effect of GABA
releasing transplants was ended 13 days after trans-
plantation, while it would have been interesting to
investigate whether this anticonvulsant effect was
long lasting. 

Adenosine and its analogues also have powerful
antiseizure and neuroprotective activities
(Fredholm, 1997 ; Lee et al., 1984). Therefore
baby hamster kidney cells have been engineered to
release adenosine in the environment by inactivat-
ing of the adenosine metabolizing enzyme adeno-
sine kinase (ADK). These adenosine-releasing
cells have been encapsulated and transplanted into
the ventricles of the rat kindling model of epilepsy
(Huber et al., 2001). After transplantation of the
cells, behavioral seizure activity was almost com-
pletely suppressed during four days after transplan-
tation. This strong protection lasted for three weeks
after transplantation after which there was a signif-

icant loss of the transplanted cells and the seizure
suppressant effect. Embryonic stem cell derived
glial cells have been engineered for adenosine
delivery (Fedele et al., 2004). These cells still have
to be transplanted into an epilepsy model but it is
expected that the survival of these glial cells will be
greater compared to the kidney and fibroblast cells,
which will probably lead to a more long term
seizure suppressant effect. 

Conclusion

From the evaluation of different cell sources for
transplantation it is evident that grafting of fetal
cells will not become the standard to treat neurode-
generative diseases because of ethical and practical
problems and the high diversity in functional out-
come after transplantation. Embryonic and neural
stem cells are good alternatives for fetal tissue,
given that we learn more about the mechanisms
involved in control of cell proliferation and differ-
entiation, neuronal integration and survival.
Genetic engineering provides a tool to modify the
cells in favor of their survival, integration and their
capacity to modify underlying disease mecha-
nisms. Other strategies for reconstruction of dam-
aged networks could be based on the stimulation of
endogenous neurogenesis and repair by means of
modulating neurotrophic mechanisms controlling
both. Another option could be to combine cell ther-
apy with neurothrophic treatment in order to maxi-
mize the recruitment of newborn but also trans-
planted cells. The cell therapy strategy for a given
disease highly depends on the complexity of the
disorder. In a disease such as PD, where there is
selective loss of dopaminergic neurons, the ulti-
mate goal is to replace the lost cells, repair connec-
tivity and normalize neurotransmitter release. That
is why lots of efforts are made to selectively gener-
ate dopaminergic cells from different cells sources.
In more complex disorders, such as stroke and
epilepsy, reconstructive therapy seems to be much
further away and therefore other strategies seem to
be appropriate in first instance. In stroke, partial
recovery after transplantation sometimes occurs
without functional integration of transplanted cells.
Therefore neurotrophic responses of both donor
and host cells, evoked by the transplantation itself,
may play an important role. Transplantation of
cells, engineered to secrete neurotrophic factors,
could be a first option in the treatment of stroke. In
epilepsy most successes can be expected by trans-
planting cells, which secrete seizure suppressant
agents or neurotransmitters, in brain structures that
are presumed to play key roles in the generation or
spread of epileptic seizures (Aberg et al., 2000 ;
Benraiss et al., 2001 ; Emsley and Hagg, 2003 ;
Kuhn et al., 1997 ; Schanzer et al., 2004 ; Wagner
et al., 1999b).
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